DSpace Repository

Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups [electronic resource] / by Friedrich Wehrung.

Show simple item record

dc.contributor.author Wehrung, Friedrich. author.
dc.contributor.author SpringerLink (Online service)
dc.date.accessioned 2017-12-02T14:46:34Z
dc.date.available 2017-12-02T14:46:34Z
dc.date.created 2017.
dc.date.issued 2017
dc.identifier.isbn 9783319615998
dc.identifier.uri http://dspace.conacyt.gov.py/xmlui/handle/123456789/22141
dc.description VII, 242 p. 5 illus.
dc.description.abstract Adopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided.
dc.description.tableofcontents Chapter 1. Background -- Chapter 2. Partial commutative monoids. - Chapter 3. Boolean inverse semigroups and additive semigroup homorphisms -- Chapter 4. Type monoids and V-measures. - Chapter 5. Type theory of special classes of Boolean inverse semigroups. - Chapter 6. Constructions involving involutary semirings and rings. - Chapter 7. discussion. - Bibliography -- Author Index. - Glossary -- Index.
dc.language eng
dc.publisher Cham : Springer International Publishing : Imprint: Springer, 2017.
dc.relation.ispartofseries Springer eBooks
dc.relation.ispartofseries Lecture Notes in Mathematics, 0075-8434 ; 2188
dc.relation.ispartofseries Lecture Notes in Mathematics, 0075-8434 ; 2188
dc.relation.uri http://cicco.idm.oclc.org/login?url=http://dx.doi.org/10.1007/978-3-319-61599-8
dc.subject Mathematics.
dc.subject Associative rings.
dc.subject Rings (Algebra).
dc.subject Algebra.
dc.subject Group theory.
dc.subject K-theory.
dc.subject Ordered algebraic structures.
dc.subject Measure theory.
dc.subject Mathematics.
dc.subject Group Theory and Generalizations.
dc.subject Associative Rings and Algebras.
dc.subject Order, Lattices, Ordered Algebraic Structures.
dc.subject General Algebraic Systems.
dc.subject K-Theory.
dc.subject Measure and Integration.
dc.subject.ddc 512.2 23
dc.subject.lcc QA174-183
dc.subject.other Mathematics and Statistics (Springer-11649)
dc.title Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups [electronic resource] / by Friedrich Wehrung.
dc.type text
dc.identifier.doi 10.1007/978-3-319-61599-8
dc.identifier.bib 978-3-319-61599-8
dc.format.rdamedia computer
dc.format.rdacarrier online resource
dc.format.rda text file PDF


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account